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Abstract 

In this paper, the forward displacement problem of 6-dof parallel manipulator is 
transformed into a new equivalent one, and then a novel approximation   
algorithm with an obvious physical significance is adopted to solve it. The 
characteristic of the presented algorithm is that, its convergence domain is bigger 
than that of the general approximation algorithm. Numerical simulation is 
illustrated to verify the validity and effectiveness of the algorithm. The proposed 
method is general and can be used for the forward displacement analysis of the 
parallel manipulator actuated by the revolute joint. 

1. Introduction 

A parallel manipulator is a closed-loop kinematic chain mechanism, 
whose end-effector is linked to the base by several independent kinematic 
chains [24]. Parallel manipulators have received increasingly attention 
due to their inherent advantages over the conventional serial mechanism 
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after the original inventor [1-42]. They have been successfully used in the 
flight and automotive simulators, robotic end-effector, and the other 
circumstances like the fast pick-and-place operation. 

This forward displacement problem is to obtain the orientation and 
position of the moving platform with respect to the base plate from the 
knowledge of joint variables and the geometry of the base and moving 
plate. Forward displacement analysis is one of the important issues in the 
development of parallel manipulator. It is usually used for the computer 
simulation and virtual prototype building. Furthermore, the motion 
planning and control of the manipulator call for the forward displacement 
analysis. Efficient solutions of this problem allow the algorithms for the 
control and motion planning of the manipulator configuration to be 
improved. The forward displacement problem involves systems of highly 
non-collinear equations, which lead to be quite difficult. Approaches for 
solving the problem can be classified into two categories, i.e., analytical 
method and numerical method. Many researchers have studied it in the 
analytical method [2, 9-12, 17, 20, 30, 36]. They applied different 
elimination procedures to eliminate the unknowns for a set of constraint 
equations and to form one polynomial equation with single variable. So, 
the major task of these kinds of methods is to solve the polynomial 
equation with one variable in the closed form. The elimination procedures 
are usually very complicated and they often introduce unnecessary 
complex roots. In addition, even the polynomial equation derived 
successfully, it is a challenging and time-consuming task to search out all 
the possible solution. 

Numerical methods were adopted by many researchers to solve the 
forward displacement problem. Newton-Raphson method was used to 
solve the six kinematic equations with six Cartesian variables [16, 31]. A 
modified Powell method was developed to solve the six kinematic 
equations for a 6-6 Stewart platform with semi-regular hexagonal 
geometry [3]. Since the initial vector does not have to be very close to the 
solution vector and the explicit evaluation of the derivative matrix is 
unnecessary, the modified Powell method is superior to the Newton-
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Raphson, Broyden, and Marquardt methods with respect to the number of 
function evaluations and computational time. The direct kinematic 
problem was transformed to the problem of global minimization of sum of 
squares objective function and solved by using the general optimization 
method. The problem was formulated in the domain of complex numbers 
[29]. A continuation method was adopted to solve the direct position 
kinematics of a fully general Stewart platform [27]. Tracking 960 paths 
from the start system, he was able to find 40 distinct solutions in the 
complex domain, which suggests that the least upper bound of the 
number of configurations of the Stewart platform may be 40. An 
exhaustive numerical approach algorithm was presented in the Cartesian 
variables [14]. They used a mono-dimensional-search rather than a six-
dimensional search in the Cartesian variables. A robust estimator design 
was proposed to solve the forward kinematics [33]. In addition, several 
other methods such as neural network and genetic algorithm were also 
used to solve the problem [1, 8, 28, 38, 39]. Interval analysis was adopted 
to solve all the possible poses of the platform for given joint coordinates 
[4, 23]. A successive approximation algorithm with much small 
convergence domain was developed for the direct position analysis of the 
parallel manipulator [41, 42]. It should be pointed that, the numerical 
approach usually can be used to find the solutions closed to the initial 
estimate by using root algorithms or optimization techniques [16]. 

When adopting the numerical method to the forward displacement 
analysis of the parallel manipulator actuated by the revolute joint, the 
procedure of the solution often be interrupted or the result has no 
physical significance due to the extraction of the square root. This paper 
presents a novel numerical method for the forward displacement analysis 
of the 6-dof parallel manipulator. The problem has been transformed into 
a new equivalent one, and then the novel approximation algorithm with 
an obvious physical significance is adopted to solve it. Simulation is given 
to illustrate the validity and effectiveness of the algorithm. The proposed 
method is general and can be used for the forward displacement analysis 
of the parallel manipulator actuated by the revolute joint. 
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2. System Description 

The schematic diagram of the 6-dof parallel manipulator is shown in 
Figures 1 and 2. It is a 6-PSS parallel manipulator, which consists of a 
platform and six sliders. In each kinematic chain, the platform and the 
slider are connected via spherical ball bearing joints by a strut of fixed 
length. Each slider is driven by a DC motor via a linear ball screw. The 
lead screw of ,, 21 BB  and 3B  are vertical to the ground. The lead screw 

of ,, 54 BB  and 6B  are parallel with the ground and are orthogonal to 

lead screw of ,, 21 BB  and .3B  

 

Figure 1. Schematic diagram of the 6-dof parallel manipulator. 
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Figure 2. Vector diagram of a PSS kinematic chain. 

For the purpose of analysis, the following coordinate systems are 
defined: The coordinate system xyzO −  is attached to the fixed base and 

another moving coordinate frame wuO ν−′  is located at the center of 
mass of the moving platform. The pose of the moving platform can be 

described by a position vector r, and a rotation matrix .o
o

′R  Let the 

rotation matrix be defined by the roll, pitch, and yaw angles, namely, a 
rotation of xφ  about the fixed x axis, followed by a rotation of yφ  about 

the fix y axis, and a rotation of zφ  about the fix z axis. Thus, the rotation 

matrix is 

( ) ( ) ( )xyzo
o xyz φφφ=′ ,Rot,Rot,RotR  

 ,









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where .sin,cos φ=φφ=φ sc  
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3. Forward Displacement Analysis 

As shown in Figure 2, the closed-loop position equation associated 
with the i-th kinematic chain can be written as 

,iiiiiii ql edbwar +++=+  (2) 

where ,,,,,, iiiiiq bawer  and id  denote the vector ,OO ′  the joint 
variable, the unit vector along the lead screw, the unit vector along strut 

,ii AC  the vector ,iAO′  the vector ,iOB  and the vector from the lead 

screw to the center point of the joint ,iC  respectively. Taking the 
derivative of Equation (2) with respect to time yields 

,iiiiii lq awe ×+=×+ ωνω&   (3) 

where iω  and ν  denote the angular velocity of the strut ii AC  and the 
linear velocity of the moving platform. 

Taking the dot product of both sides of Equation (3) with iw  yields 

( ) .















 ×
=

ω
ν

i
T
i

T
ii

i
T
i

T
i

iq
ew
wa

ew
w

&  (4) 

Rewriting Equation (4) in the matrix form yields 

 ,1 XJXJJq &&& == −
xq  (5) 

where 
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where J is the Jacobian matrix, which maps the velocity vector X&  into 
the joint velocity vector .q&  
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3.1. General approximation algorithm 

Suppose the desired approximation precision is e. Let 0X  be the 

initial estimated pose of the moving platform. The direct displacement 
problem can be solved as the following general approximation algorithm: 

Step 1. Calculate the joint variables of the six kinematic chains 
corresponding to the initial estimated pose .0X  

The joint variables iq0  corresponding to the instantaneous 

configuration determined by the 0X  can be calculated as: 

 ( ) ( ),0000000 iiiii
T

iiiiii ll dbwardbwarq −−−+−−−+=   (10) 

where 

 ,00 0 i
o

o
o

i aRa ′
′=  (11) 

 ( ( )) ( ( )) ( ( )).1,4,Rot1,5,Rot1,6,Rot 0000 XXXR xyzo
o =′  (12) 

Step 2. Calculate the approximation step that the moving platform 
need to move. 

The Jacobian matrix of the instantaneous configuration is achieved 
through Equations (5), (6), (7), (8), and (9). The difference between the six 
input joint variables and the instantaneous six joint variables is 

[ ] .066055044033022011
Tqqqqqqqqqqqq −−−−−−=∆q  (13) 

In order to approximate the desired configuration, the pose vector 
difference, which the moving platform should move is 

,1 qJX ∆=∆ −   (14) 

where J is the Jacobian matrix corresponding to the instantaneous 
configuration of the parallel manipulator. 

Step 3. Calculate the new pose vector of the moving platform ,1X  

which represent the new instantaneous configuration. 
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,1
01 qJXXXX ∆λ+=∆λ+= −   (15) 

where ( )γ∈λ ,0  is the coefficient and γ  can be bigger than one. 

Step 4. Calculate the new six joint variables iq1  corresponding to the 

new instantaneous configuration is determined by the pose vector .1X  

( ) ( ),1111111 iiiii
T

iiiiii llq dbwardbwar −−−+−−−+=   (16) 

where 

,111 i
o

o
o

i aRa ′
′=  (17) 

( ( )) ( ( )) ( )( ) .1,4,Rot1,5,Rot1,6,Rot 01 o
o

o
o xyz ′′ ∆∆∆= RXXXR  (18) 

So, joint variables corresponding to the instantaneous configuration are: 
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( ) ( ) ;2
525

2
5

2
51505 dhAcAlhAq zxy −−−+−−+=  (19e) 

( ) ( ) ,2
626

2
6

2
61606 dhAAlhAq zyx −−−−−+=  (19f) 

where ,, iyix AA  and izA  are the coordinates of the point iA  in the 

coordinate system .xyzO −  

Step 5. If the following condition 

e≤− 1qq   (20) 
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is satisfied, stop the approximation. The instantaneous configuration is 
the desired one. •  is the norm of the vector, which can be chosen           

1-norm, 2-norm, and -∞ norm. We select 2-norm in this paper. 

If the above condition is not satisfied, let 

,10 XX =   (21) 

.10 o
o

o
o

′′ = RR   (22) 

Go to the Step 2 to continue the approximation. 

The above general approximation algorithm has been used 
successfully for the direct displacement analysis of the in-parallel 
manipulator. However, it must be pointed that it often failures, if the 
initial joint variables iq0  are not given correctly, when used for the direct 

displacement analysis of the parallel manipulator actuated by the 
revolute joint. Due to Equation (19), the result of the joint variable is 
often a complex number. There is no physical significance for a complex 
joint variable. So, approximation of the solution to the displacement 
problem often be interrupted or the result has no physical significance. In 
order to avoid this phenomenon, the direct displacement problem of the  
6-dof parallel manipulator can also be transformed into a new equivalent 
one. 

3.2. Novel approximation algorithm 

Suppose that the strut ii AC  is extensible while the slider is fixed, to 

determine the position of the point ,iA  when the length of the struts is 

given. This is the main idea of the equivalent problem. On this postulated 
condition, taking the derivative of the Equation (2) with respect to time 
yields 

.iiiiii ll aww ×+=×+ ωνω&   (23) 
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Taking the dot product of both sides of Equation (23) with ,iw  then yields 

[ ( ) ] .



×=
ω
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iil waw&  (24) 

Rewriting Equation (24) in the matrix form yields 

,XJL &&
L=   (25) 

where 
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The equivalent direct kinematics problem is solved in the following: 

Step 1. Calculate the joint variables of the six kinematic chains 
corresponding to the initial estimated pose .0X  

The initial length of the supposed extensive link corresponding to the 
instantaneous configuration determined by the 0X  can be calculated as: 

( ) ( ),00000 iiiii
T

iiiiii qql edbaredbar −−−+−−−+=  (29) 

where 

,00 0 i
o

o
o

i aRa ′
′=  (30) 

( ( )) ( ( )) ( )( ).1,4,Rot1,5,Rot1,6,Rot 0000 XXXR xyzo
o =′  (31) 

Step 2. Calculate the approximation step that the moving platform 
need to move. The difference between the six input legs length and the 
supposed instantaneous six legs length is 
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[ ] .066055044033022011
Tllllllllllll −−−−−−=∆L  (32) 

In order to approximate the desired configuration, the pose vector 
difference, which the moving platform should move is 

.1 LJX ∆=∆ −
L  (33) 

Step 3. Calculate the new pose vector of the moving platform ,1X  
which represent the new instantaneous configuration. 

,1
01 qJXXXX ∆λ+=∆λ+= −  (34) 

where ( )γ∈λ ,0  is the coefficient and γ  can be bigger than one. 

Step 4. Calculate the new length of the supposed link corresponding 
to the new instantaneous configuration is determined by the pose vector 

.1X   

( ) ( ),11111 iiiii
T

iiiiii qql edbaredbar −−−+−−−+=  (35) 

 [ ] ,1615141312111
Tllllll=L  (36) 

where 

,111 i
o

o
o

i aRa ′
′=  (37) 

( ( )) ( ( )) ( )( ) .1,4,Rot1,5,Rot1,6,Rot 01 o
o

o
o xyz ′′ ∆∆∆= RXXXR  (38) 

Step 5. If the following condition 

e≤− 1LL   (39) 

is satisfied, stop the approximation. The instantaneous configuration is 
the desired one. 

There is no extraction of square root of quadratic equation like 
Equation (19) in this approximation. So, its convergence domain is bigger 
than that of the general iterative method. This is the characteristic of the 
novel approximation algorithm for the forward kinematics of the 6-dof 
parallel manipulator. 
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4. Numerical Simulation 

Adopting the presented method, we solve the direct kinematic 
problem of the 6-dof parallel manipulator. The structure parameters and 
the input joint variables are given in Table 1 through Table 5. 

 

Table 1. The parameters of the base platform (m) 

 1 2 3 4 5 6 

Bix  0.300000 0.000000 – 0.300000 0.300000 – 0.300000 – 1.607000 

Biy  – 0.300000 0.300000 – 0.300000 – 1.607000 – 1.607000 0.000000 

Biz  0.000000 0.000000 0.000000 1.437000 1.437000 1.437000 

 

Table 2. The parameters of the moving platform, which are 
measured in the coordinate frame wuO ν−′  (m) 

 1 2 3 4 5 6 

Aix  0.300000 0.000000 – 0.300000 0.300000 – 0.300000 – 0.581000 

Aiy  – 0.300000 0.300000 – 0.300000 – 0.581000 – 0.581000 0.000000 

Aiz  – 0.266000 – 0.266000 – 0.266000 – 0.037500 – 0.037500 – 0.037500 

 

Table 3. The length of the strut ii AC  (m) 

 1 2 3 4 5 6 

il  0.382000 0.362000 0.382000 0.382000 0.382000 0.362000 

 

Table 4. The input joint variable (m) 

 1 2 3 4 5 6 

iq  0.800000 0.900000 1.000000 0.900000 0.800000 0.700000 
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Table 5. The position of the spherical ball bearing joint iC  (m) 

 1 2 3 4 5 6 

Cix  0.300000 0.000000 – 0.300000 0.300000 – 0.300000 – 0.907000 

Ciy  – 0.056000 0.544000 – 0.056000 – 0.707000 – 0.807000 0.000000 

Ciz  0.866000 0.966000 1.066000 1.681000 1.681000 1.681000 

We choose the approximation precision 610−=e  and the coefficient 
.1=λ  The results are shown in Table 6, where iL  is the length vector of 

the supposed extensive links corresponding to the instantaneous 
configuration in the approximation process. Other parameter used in the 
simulation is given as .m244.0=id  

The number of steps of the novel approximation algorithm for the 
forward displacement analysis of the 6-dof parallel manipulator is only 
six. The result of the numerical simulation shows that the algorithm is 
very effective. 
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Table 6. The process and the last result by virtue of novel 
approximation algorithm (SI) 

X 0X  1X  2X  3X  4X  

x  0.000000 0.050192 0.058464 0.002393 – 0.011837 
y  0.000000 0.375233 0.288196 0.185060 0.174403 
z  1.860000 1.676052 1.631098 1.585370 1.562882 

xφ  0.000000 – 0.02390 – 0.138131 – 0.051880 – 0.065038 

yφ  0.000000 0.171707 0.298800 0.344658 0.334854 

zφ  0.000000 0.546696 0.006223 0.111493 0.062776 

L 0L  1L  2L  3L  4L  

1l  0.767802 0.599534 0.464975 0.391299 0.383871 

2l  0.673736 0.466945 0.375294 0.385302 0.362474 

3l  0.581653 0.461736 0.441252 0.402007 0.383073 

4l  0.189468 0.800180 0.432031 0.402997 0.384816 

5l  0.266643 0.662022 0.526383 0.390975 0.385352 

6l  0.355385 0.472466 0.494886 0.379373 0.364143 

 

5X  6X  X 

– 0.014314 – 0.014526 – 0.014528 

0.169775 0.169467 0.169463 

1.559887 1.559677 1.559674 

– 0.062074 – 0.061693 – 0.061688 

0.338818 0.339370 0.339376 

0.055135 0.054050 0.054038 

5L  6L  L 

0.382121 0.382001 0.382000 

0.362017 0.362000 0.362000 

0.382049 0.382001 0.382000 

0.382198 0.382003 0.382000 

0.382100 0.382001 0.382000 

0.362019 0.362001 0.362000 
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With the same initial configuration, Table 7 shows the process and 
the results of the general approximation algorithm. It can be seen that 
the approximation process may also be unsuccessful even, when the 
initial 0X  is not out of the workspace of the 6-dof parallel manipulator. 

Since, there is no extraction of square root of quadratic equation like 
Equation (19) in the procedure of the general approximation, its 
convergence domain is bigger than that of the general approximation 
algorithm. This is the characteristic of the presented approximation 
algorithm for the forward displacement analysis of the 6-dof parallel 
manipulator. 

Table 7. The process and the last result by virtue of general 
approximation algorithm (SI) 

X 0X  1X  2X  7,4,3 L=iiX  X 

x  0.000000 0.055106 0.063684 

y  0.000000 0.363990 – 0.010810 

z  1.860000 1.647534 1.632797 

xφ  0.000000 – 0.034076 – 0.021449 

yφ  0.000000 0.206418 0.086810 

zφ  0.000000 0.506757 0.340664 

Complex Numbers Complex Numbers 

q 0q  1q  73,2 L=iiq  q 

1q  1.234082 1.022485 

2q  1.260590 0.978909 

3q  1.234082 1.069405 

4q  0.671174 1.382534 

5q  0.671174 1.261432 

6q  0.692801 0.809904 

Complex Numbers Complex Numbers 
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5. Conclusion 

A novel numerical method for the forward displacement analysis of 
the 6-dof parallel manipulator is presented in this paper. The problem 
has been transformed into a new equivalent one, and then the novel 
approximation algorithm with an obvious physical significance is adopted 
to solve it. Compared with the general numerical method, there is no 
extraction of square root of quadratic equation in the iteration procedure. 
So, its convergence domain is bigger than that of the general iterative 
method. Simulation is given to illustrate the validity and effectiveness of 
the algorithm. The proposed method is general and can be used for the 
forward displacement analysis of the parallel manipulator actuated by 
the revolute joint. 
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